Strategies and Numerical Implementation of Fatigue Life Models for Continuous Fiber Reinforced Polymers

Composites, Virtual Performance

Introduction

Structural components made of continuous fiber reinforced polymers are exposed to repeatedly-applied loads leading to fatigue failure during the service life. To predict the lifetime and achieve the proper industrial part design against fatigue failure, the development of numerical simulation tool is crucial. Even though fatigue phenomena in composites have been intensively investigated, having a unique and reliable numerical simulation strategy remains a great challenge. The primary issue to address is to establish a robust constitutive modeling including non-linear behaviors, namely progressive damage mechanism and inelastic behavior of constituents at micro and meso scales. Nonetheless, the complexity increases when time-dependent or cyclic behavior is involved. These issues on material modeling and lifetime prediction for composite materials were addressed in this work. Implementation is performed in environmental solution for structural design (Virtual Performance Solution. Solver Notes Manual, ESI Group, Paris, France. 2013).

Authors
Dmytro Vasiukov - Mines de Douai, 764 boulevard Lahure, 59500 Douai, France.

Download form

Please accept marketing-cookies to see this form.